Skip to content
Fundación Pasos Libres
Prevenimos la trata de personas con innovación social y tecnológica
Fundación Pasos LibresFundación Pasos Libres
  • Home
  • Acerca de
  • Tech_PasosLibres
  • Servicios
  • Agenda
  • Blog
  • Contacto
Donar
Facebook page opens in new windowX page opens in new windowInstagram page opens in new window
ENGLISH
  • Home
  • Acerca de
  • Tech_PasosLibres
  • Servicios
  • Agenda
  • Blog
  • Contacto

Daily Archives: 16 octubre, 2020

You are here:
  1. Home
  2. 2020
  3. octubre
  4. 16

Primera DataJam mundial contra la trata de personas

TECH PASOS LIBRESBy fpasoslibres16 octubre, 2020

PRIMERA COMPETENCIA TECNOLÓGICA MUNDIAL PARA DESARROLLAR SOLUCIONES BASADAS EN DATOS CONTRA LA TRATA DE PERSONAS Un total de 158 participantes y 29 expertos de 13 países, así como 24 soluciones basadas en datos para luchar contra la trata de personas, son parte de los resultados de la exitosa tercera versión de DataJam Pasos Libres dirigida…

Fundación Pasos Libres

FUNDACIÓN PASOS LIBRES
Bogotá, Colombia 2025

Go to Top

Blue Sky Innovation

Propose bold, forward-thinking ideas that rethink how AI can be applied in assessing modern slavery statements and beyond. This open track encourages visionary concepts and experimental approaches that go beyond current project boundaries.

 

Application & Visualization for Stakeholder Impact

Build innovative applications, software tools, or visualizations by optimizing and extending the resources developed in the AIMS project—such as datasets and AI models. The goal is to create user-focused solutions that better serve the needs of key stakeholders, including policymakers, NGOs, and researchers.

AI Model Optimization & Explainability

Improve the performance and contextual understanding of AI models used in the project. This may involve refining architectures, enhancing training data, or designing approaches to better capture nuance. A key focus is also on improving model explainability, ensuring outputs are transparent and interpretable by end users.

Data Processing & Enrichment

Enhance the quality, structure, and usability of datasets used in the project. Challenges may include addressing limitations in parsing scanned PDFs (e.g., improving OCR accuracy), enabling the inclusion of figures and tables, and developing more robust methods for documents’ understanding, data cleaning and enrichment.